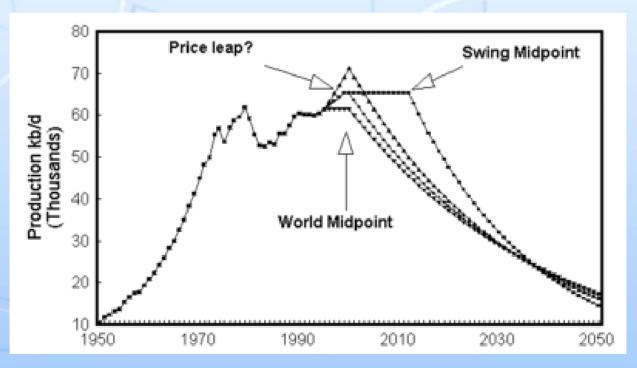
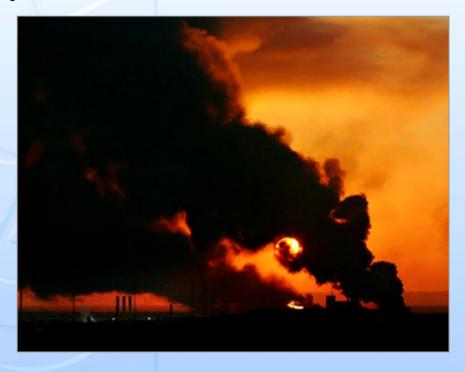


Hull Offshore Wind

February 24, 2007

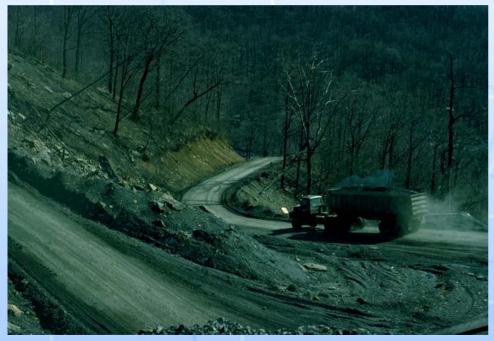

James F. Manwell, Professor and Director Renewable Energy Research Laboratory Dept. of Mechanical and Industrial Engineering University of Massachusetts/Amherst

- Price for conventional energy will continue to rise
- Supply of conventional energy will become more problematic



- Conventional energy supply:
 - Limited petroleum reserves world wide ("peak oil")

- Conventional energy supply:
 - Geopolitical instability:
 - US consumes 25% annual world oil production
 - 6% proven petroleum reserves are in North America
 - 66% proven oil reserves are in Middle East
 - Draw your own conclusions


Burning pipeline in Iraq

University of Massachusetts **2**

- Conventional energy supply:
 - Environmental degradation, e.g. from coal mining:

- Conventional energy supply:
 - Climate change:
 - Melting glaciers
 - Sea level rise
 - Increased storm severity

Retreating glacier, (Iceland 2005)

Winter storm and flooding, Atlantic Ave, Hull, January, 2005 (photo: M. Fournier)

Renewable Energy

- The alternative to the present situation
 - Electricity from wind one of best options
- Supported in principle by most people
- Incentives in Massachusetts
- In practice, implementation has been slow
- Except in Hull!

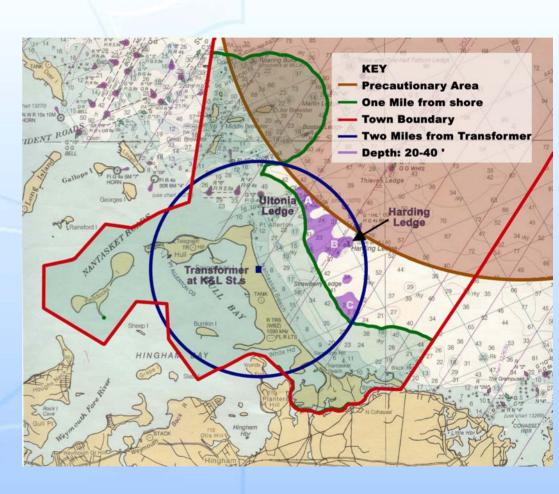
Why Wind Energy in Hull?

- Good wind resource
- Municipal light department
 - Few intrinsic barriers
 - Economics of wind are attractive
- Pragmatic and far sighted light board and operations manager

Renewable Energy Research Laboratory

Why Consider Offshore Wind **Turbines in Hull?**

- Stabilization of electricity prices through greater use of wind energy
- Limited space for additional wind turbines on land
- Substantial potential for offshore wind turbines
- Responsible choice
- Challenge and excitement!


The Proposed Hull Offshore Wind Project

- Four wind turbines
 - > 3-5 MW (295' 417' rotor diameter)
 - (Hull Wind 2: 1.8 MW, 262' rotor)
- Installed in vicinity of Harding Ledge
- 12 20 MW total generating capacity
- Energy production (on average) could approach 100% of Hull's electricity consumption

Preliminary Siting Constraints


- In Hull's waters
- Suitable for commercial turbines
 - 20-40 ft deep
- Outside shipping lanes
- We initially chose these distances:
 - > 1 mile from shore
 - < 2 miles from proposed connection point

Siting Criteria (1)

- Avoid or minimize impacts on:
 - Marine environment
 - Human activities
 - Fishing, boating, etc...
 - Ship and airplane traffic

Siting Criteria (2)

- Allow a feasible landfall
- Minimize transmission line length
- Maximize wind speeds
- Minimize cost of energy

Study Phase

- Feasibility
 - Projected costs vs. benefits
- Turbine design basis
 - Input to cost estimates
- Studies for permits
- Fatal flaws?

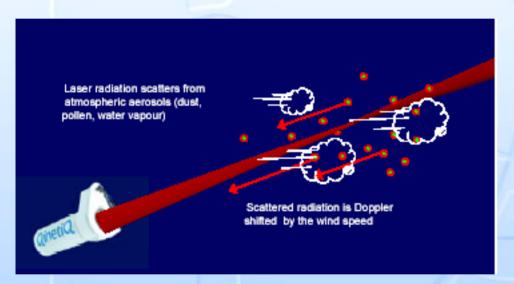
Principle Partners

- Hull Municipal Light Plant (HMLP)
- Massachusetts Technology Collaborative (MTC)
 - Administrator of MA Renewable Energy Trust Fund
 - Financial support
- UMass/Amherst RERL
 - Engineering
 - Wind/waves
 - Feasibility/layout/visualizations
 - Structural dynamic modeling
- ESS, Inc.
 - Environmental studies

Other Contractors

- AMEC Paragon, Houston
 - Support structure design
- Prof. Jason DeJong (UMass and UC Davis)
 - Soil/support structure interactions
- GZA Geoenvironmental
 - Offshore soil sampling
- MIT's Laboratory for Energy and the Environment
 - Environmental benefits (reduction in air pollutants)

Wind Resource Assessment


- Used for:
 - Energy production estimates
 - Design of wind turbines and support structures
- Data from:
 - Monitoring on Little Brewster island and WBZ towers
 - Historical data from Boston Harbor and offshore buoys
- Mathematical projections

Wind Data Collection

Conventional anemometry and LIDAR



WBZ Tower/LIDAR

• Comparisons:

Little Brewster

Location and data collection:

Anemometer

Little Brewster Island

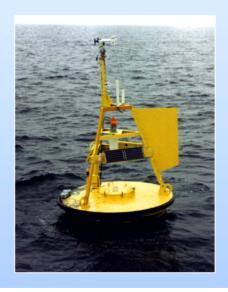
Aerial view of Little Brewster

Harding Ledge

Waves

 Information on waves needed for preliminary design and cost estimates of support structure:

Waves on Offshore Wind Turbine in England



Wave Data

- Monitoring using a Sontek "acoustic Doppler profiler" (ADP) in vicinity of Harding Ledge
- Correlations with offshore buoys

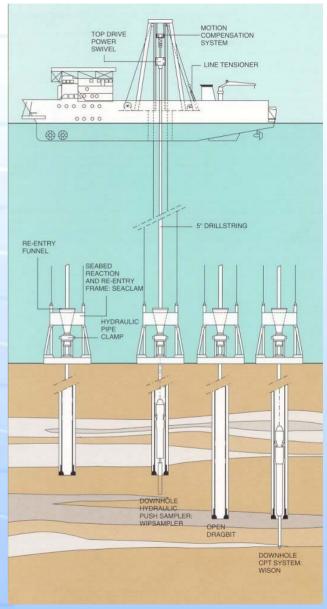
NDBC Data Buoy

Sontek ADP

University of Massachusetts **2**

ADP in Anti-Trawl Device

• Anti-trawl device will be used to protect ADP:

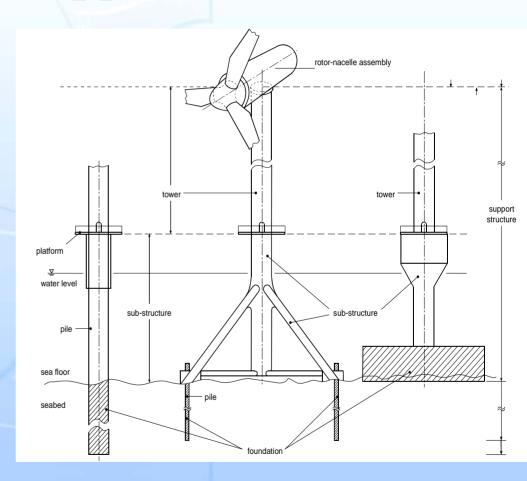


Geotechnical Investigation

 Soil data needed for preliminary design and cost estimate of support structures

Typical offshore soil sampling

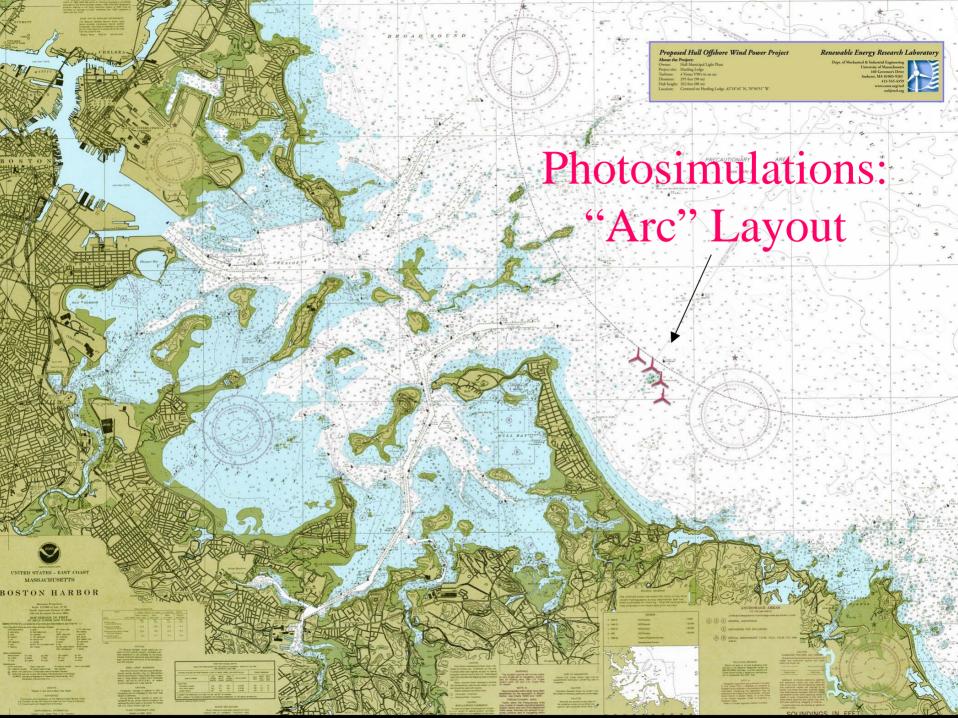
www.fugro.co.uk



Wind Turbine Support Structure

- Some offshore wind turbine support structure options
- Type used in Hull will depend on seabed properties

Electrical Cable


- Submarine cables to shore
- Layout needed for:
 - Cost estimates
 - Environmental impact assessments
 - Interconnection planning

Some Possible Cable Routes

University of Massachusetts **2**

Photo Simulation: (Clarion)

Photo Simulation of Hull Offshore Wind Power Project

About the Project:

Owner: Hull Municipal Light Plant

Project site: Harding Ledge
Turbine: Vestas V90
Diameter: 295 feet (90 m)
Hub height: 262 feet (80 m)

Location: 42°18'16.2" N, 70°50'50.5" W

About the Photo:

Viewpoint: Clarion Hotel, second floor

Distance to turbine: -2.2 miles Angle of View: -38 degrees

Location: 42°16'29.8"N, 70°51'41.6" W Base Photo: Taken Dec. 20, 2006, #30

Apparent size and location of the turbine from this viewpoint is determined geometrically using EMD WindPro software.

Renewable Energy Research Laboratory

rerl@rerl.org

Dept. of Mechanical & Industrial Engineering
University of Massachusetts
160 Governor's Drive
Amherst, MA 01003-9265
413-545-4359
www.ceere.org/rerl

Photo Simulation of Hull Offshore Wind Power Project

About the Project:

Owner: Hull Municipal Light Plant

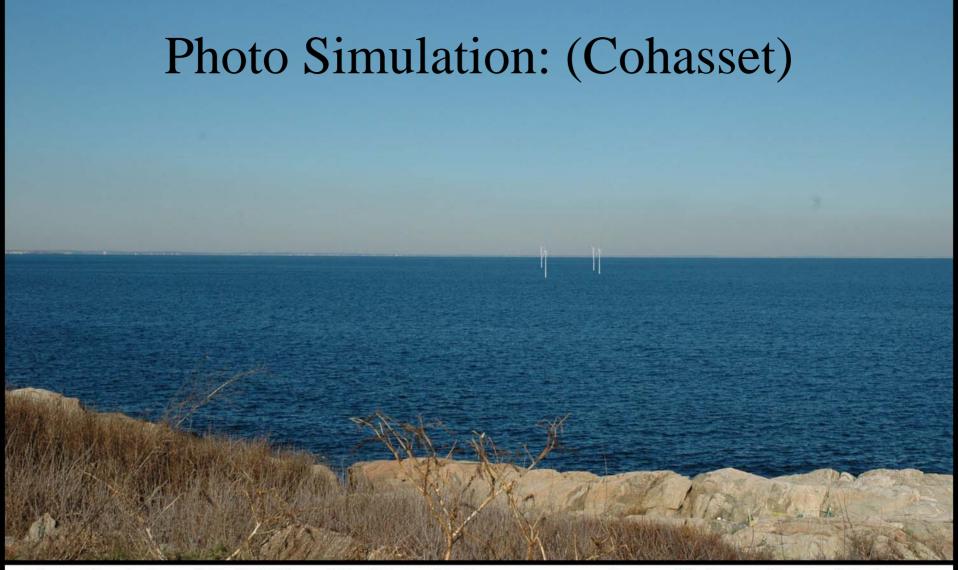
Project site: Harding Ledge
Turbine: 4 Vestas V90 's
Diameter: 295 feet (90 m)
Hub height: 262 feet (80 m)

Location: 42°18'16.2" N, 70°50'50.5" W

About the Photo:

Viewpoint: 4 Oceanside Drive

Distance to turbine: -5.6 miles Angle of View: -38 degrees


Location: 42.26803°N 70.84785°W
Base Photo: Taken Dec. 20, 2006, #44

Apparent size and location of the turbine from this viewpoint is determined geometrically using EMD WindPro software.

Renewable Energy Research Laboratory

Dept. of Mechanical & Industrial Engineering
University of Massachusetts
160 Governor's Drive
Amherst, MA 01003-9265
413-545-4359
www.ceere.org/rerl

Photo Simulation of Hull Offshore Wind Power Project

About the Project:

Owner: Hull Municipal Light Plant

Project site: Harding Ledge
Turbine: 4 Vestas V90's
Diameter: 295 feet (90 m)
Hub height: 262 feet (80 m)

Location: 42°18'16.2" N, 70°50'50.5" W

About the Photo:

Viewpoint: Cohassett, Jerusalem Rd.

Distance to turbine: -3.3 miles
Angle of View: -38 degrees

Location: 42.262672°N 70.814406°W Taken Dec. 20, 2006, #57

Apparent size and location of the turbine from this viewpoint is determined geometrically using EMD WindPro software.

Renewable Energy Research Laboratory

Dept. of Mechanical & Industrial Engineering University of Massachusetts 160 Governor's Drive Amherst, MA 01003-9265 413-545-4359 www.ceere.org/rerl

Progress So Far

- Predevelopment engineering studies
 - Wind data collection underway
 - LIDAR monitoring on Little Brewster planned for spring
 - Wave monitoring device ordered
 - Installation planned for spring
 - Layout optimization software being finalized
 - Support structure modeling underway
 - Initial visualizations completed